The central role of metal coordination in selenium antioxidant activity.

نویسندگان

  • Erin E Battin
  • Nathan R Perron
  • Julia L Brumaghim
چکیده

Oxidative DNA damage occurs in vivo by hydroxyl radical generated in metal-mediated Fenton-type reactions. Cell death and mutation caused by this DNA damage are implicated in neurodegenerative and cardiovascular diseases, cancer, and aging. Treating these conditions with antioxidants, including highly potent selenium antioxidants, is of growing interest. Gel electrophoresis was used to directly quantify DNA damage inhibition by selenium compounds with copper and H(2)O(2). Selenocystine inhibited all DNA damage at low micromolar concentrations, whereas selenomethionine showed similar inhibition at 40 times these concentrations, and 2-aminophenyl diselenide showed no effect. DNA damage inhibition by these selenium compounds does not correspond to their glutathione peroxidase activities, and UV-vis and gel electrophoresis results indicate that selenium-copper coordination is essential for DNA damage inhibition. Understanding this novel metal-coordination mechanism for selenium antioxidant activity will aid in the design of more potent antioxidants to treat and prevent diseases caused by oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of inorganic selenium compounds on oxidative DNA damage.

Exposure of Escherichia coli or mammalian cells to H2O2 results in cell death due to iron-mediated DNA damage. Since selenium compounds have been examined for their ability to act as antioxidants to neutralize radical species, and inorganic selenium compounds are used to supplement protein mixes, infant formula, and animal feed, determining the effect of these compounds on DNA damage under cond...

متن کامل

Selenium nanoparticles role in organ systems functionality and disorder

Extensive research on the nutritional and medical application of selenium nanoparticles (SeNPs) was performed in past decades. Besides nutritional values, new characteristics such as antibacterial and anticancer properties depict a bright future for high Selenium (Se) consumption in the coming years. Se is essential for the proper functioning of most of the m...

متن کامل

Study of Antioxidant Effects of Selenium-Enriched Saccharomyces Boulardii on Staphylococcus Aureus Infection

Background: The most important strategy of the immune system against pathogens is producing active oxygen intermediates with sidelong consequence of oxidative stress induction in body. Probiotics and selenium have recently been proven to be powerful antioxidants that help boost the immune system. Hence, the aim of this study was to investigate the antioxidant effects of Sac...

متن کامل

Selenium redox biochemistry of zinc-sulfur coordination sites in proteins and enzymes.

Selenium has been increasingly recognized as an essential element in biology and medicine. Its biochemistry resembles that of sulfur, yet differs from it by virtue of both redox potentials and stabilities of its oxidation states. Selenium can substitute for the more ubiquitous sulfur of cysteine and as such plays an important role in more than a dozen selenoproteins. We have chosen to examine z...

متن کامل

Antibacterial, Antioxidant, and Anticancer Activities of Biosynthesized Selenium Nanoparticles Using Two Indigenous Halophilic Bacteria

Background & Aims of the Study: Selenium is an essential nutritional material used for the important functions of the human body. The issue of the production of selenium nanoparticles (SeNPs) was investigated in various fields, such as anticancer, antioxidant, and antibacterial activities. Materials and Methods: In order to study antibacterial activity, the nutrient broth medium containing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inorganic chemistry

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2006